Physics

Exploring the conversion of heat to electricity in single molecules

The direct conversion of a temperature difference into electricity, known as the thermoelectric effect, is an environmentally friendly approach to directly harvesting electricity from heat. The ability of a material to convert heat to electricity is measured by its thermoelectric figure of merit. Materials with a high thermoelectric figure of merit are thus widely desired for use in energy harvesting. Quantum confinement effects in nanomaterials arising from their discrete electronic states may increase their thermoelectric figure of merit. In particular, a single molecule bridging two electrodes displays quantum confinement. Optimization of the electronic states of a single molecule bridging electrodes could yield a large thermoelectric effect. The contact between the molecule and electrodes will also influence its thermoelectric behavior. However, this relationship has seldom been considered because of technical difficulties.