Articles from General Physics News

New cost-effective instrument measures molecular dynamics on a picosecond timescale

Studying the photochemistry, or chemical results of light, has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale.

Researchers work to advance understanding of hydrodynamic instabilities in NIF, astrophysics

In a Proceedings of the National Academy of Sciences (PNAS) "Special Feature" paper published online June 26, Lawrence Livermore National Laboratory (LLNL) and University of Michigan researchers reported on recent experiments and techniques designed to improve understanding and control of hydrodynamic (fluid) instabilities in high energy density (HED) settings such as those that occur in inertial confinement fusion implosions on the National Ignition Facility (NIF).

What happens when we heat the atomic lattice of a magnet all of a sudden?

Magnets have fascinated humans for several thousand years and enabled the age of digital data storage. They occur in various flavors. Ferrimagnets form the largest class of magnets and consist of two types of atoms. Similar to a compass needle, each atom exhibits a little magnetic moment, also called spin, which arises from the rotation of the atom's electrons about their own axes. In a ferrimagnet, the magnetic moments point in opposite directions for the two types of atoms (see panel A).

Neutrons analyze advanced high-strength steels to improve vehicle safety and efficiency

The demand for lighter, stronger, and more durable materials for use in vehicles has never been higher. Companies are looking at new and advanced materials such as lightweight advanced high-strength steels (AHSS) to develop automotive components that help increase gas efficiency, reduce maintenance costs, and save lives.

Researchers determine why pulsed sparks make for better ignition

Researchers in the Oregon State University College of Engineering have learned the mechanisms behind a means of improved ignition, helping to open the door to better performance in combustion systems ranging from car engines to jet propulsion.

New study again proves Einstein right: Most thorough test to date finds no Lorentz violation in high-energy neutrinos

The universe should be a predictably symmetrical place, according to a cornerstone of Einstein's theory of special relativity, known as Lorentz symmetry. This principle states that any scientist should observe the same laws of physics, in any direction, and regardless of one's frame of reference, as long as that object is moving at a constant speed.

Hybrid device harvests both mechanical and magnetic energy

A new hybrid energy-harvesting device may one day replace the need for batteries in certain low-power electronics devices. The new device collects ambient wasted energy from both mechanical vibrations and magnetic fields to generate sustainable electricity, which could potentially provide enough power to run wireless sensors, cardio pacemakers, and other applications.

Understanding the universe through neutrinos

Determining features of the elusive particle known as a neutrino – through the observation of an extremely rare nuclear process called neutrinoless double-beta decay (NDBD)—could provide a glimpse into the nature of the universe during the earliest moments of the Big Bang.

Theorists publish highest-precision prediction of muon magnetic anomaly

Theoretical physicists at the U.S. Department of Energy's (DOE's) Brookhaven National Laboratory and their collaborators have just released the most precise prediction of how subatomic particles called muons—heavy cousins of electrons—"wobble" off their path in a powerful magnetic field. The calculations take into account how muons interact with all other known particles through three of nature's four fundamental forces (the strong nuclear force, the weak nuclear force, and electromagnetism) while reducing the greatest source of uncertainty in the prediction.

Researchers interpret new experimental data aimed at showing dark matter interacts with ordinary matter

An international team of scientists that includes University of California, Riverside, physicist Hai-Bo Yu has imposed conditions on how dark matter may interact with ordinary matter—constraints that can help identify the elusive dark matter particle and detect it on Earth.