Physics

Controlling skyrmions for better electronics

Physicists at the University of Hamburg managed for the first time to individually write and delete single skyrmions, a knot-like magnetic entity. Such vortex-shaped magnetic structures exhibit unique properties which make them promising candidates for future data storage devices. Skyrmions have been in the focus of active research for the last years; however, up to now these states have been merely investigated, a controlled manipulation has not been achieved.

How the Sun's Corona Gets So Hot

The phenomenon of "solar braiding," hypothesized 30 years ago, has now been validated by images from an orbital telescope.

Astronaut Michael Foale Leaves NASA After 30-Year Career

NASA astronaut Michael Foale has retired, ending a 26-year space agency career that included 375 days in space during six space shuttle missions and extended stays aboard two space stations.

Astronaut Michael Foale Leaves NASA After 26-Year Career

NASA astronaut Michael Foale has retired, ending a 26-year space agency career that included 375 days in space during six space shuttle missions and extended stays aboard two space stations.

Following Higgs discovery, physicists offer vision to unravel mysteries of universe

After nine days of intensive discussions, nearly 700 particle physicists from about 100 universities and laboratories concluded nine months of work with a unified framework for unmasking the hidden secrets of matter, energy, space and time during the next two decades.

Atomic clock can simulate quantum magnetism

Researchers have for the first time used an atomic clock as a quantum simulator, mimicking the behavior of a different, more complex quantum system. All but the smallest, most trivial quantum systems are too complicated to simulate on classical computers, hence the interest in quantum simulators to understand the quantum mechanical behavior of exotic materials such as high-temperature superconductors.

Fast detector for a wide wavelength range

Free-electron lasers are extremely versatile research tools because their intense, super short light flashes permit a closer look at new materials and even biological molecules; thus, allowing effects to be observed that had not been known previously. For pulsed lasers in the far infrared range, the so-called terahertz range, scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have developed a robust and fast detector which can measure the arrival of a terahertz pulse with great accuracy. The results were published in the scientific journal Applied Physics Letters.

Theorist helps sharpen tests of fundamental theory in high energy experiments

(Phys.org) —Three theoretical physicists have taken an important step toward eliminating theoretical ambiguities from the staggeringly complicated mathematics used to explore the interactions of quarks, the tiniest known bits of matter inside protons and neutrons, and gluons, the enigmatic particles responsible for keeping them trapped there. Simplifying these calculations can make them easier for other particle theorists to perform and lead to more accurate predictions for experimental particle physicists to test.

A new tool to split X-ray laser pulses

(Phys.org) —A new tool at SLAC's Linac Coherent Light Source splits individual X-ray laser pulses into two pulses that can hit a target one right after another with precisely controlled timing, allowing scientists to trigger and measure specific ultrafast changes in atoms and molecules.

Fast detector for a wide wavelength range

Free-electron lasers are extremely versatile research tools because their intense, super short light flashes permit a closer look at new materials and even biological molecules; thus, allowing effects to be observed that had not been known previously. For pulsed lasers in the far infrared range, the so-called terahertz range, scientists have developed a robust and fast detector which can measure the arrival of a terahertz pulse with great accuracy.

Pages

Subscribe to Mr. Loyacano RSS