| Name:                              | Class: | Date: |  |  |
|------------------------------------|--------|-------|--|--|
| Two-Dimensional Motion and Vectors |        |       |  |  |
| Math Skills                        |        |       |  |  |
|                                    |        |       |  |  |

## **Projectile Motion**

After a snowstorm, a boy and a girl decide to have a snowball fight. The girl uses a large slingshot to shoot snowballs at the boy. Assume that the girl fires each snowball at an angle  $\theta$  from the ground and that the snowballs travel with an initial velocity of  $v_0$ .

- 1. In terms of the initial velocity,  $v_0$ , and the launch angle,  $\theta$ , for what amount of time,  $\Delta t$ , will a snowball travel before it reaches its maximum height above the ground? (Hint: Recall that  $v_f = 0$  when an object reaches its maximum height.)
- 2. What is the maximum height, *h*, above the ground that a snowball reaches after it has been launched?
- 3. What is the horizontal distance, *x*, the snowball has traveled when it reaches its maximum height?
- 4. The range, R, is the horizontal distance traveled in *twice* the time it takes for an object to reach its maximum height. Using your answers from items 1 and 3, write an expression for the range in terms of  $v_0$ ,  $\theta$ , and g.
- 5. If the initial velocity,  $v_0$ , equals 50.00 m/s, find the maximum height and range for each of the launch angles listed in the table below.

| Launch angle | Maximum height (m) | Range (m) |
|--------------|--------------------|-----------|
| 15°          |                    |           |
| 30°          |                    |           |
| 45°          |                    |           |
| 60°          |                    |           |
| 75°          |                    |           |