Physics

Empty spaces, how do they make a protein unstable?

Partial unfolding of proteins can be a major challenge in the industry, as it may affect the stability of products. So how does an empty space or cavity in its hydrophobic core destabilize a protein? And would such a cavity, in fact, be empty? These are some of the questions that researchers answer in a new study.

Controlling the charge state of organic molecule quantum dots in a 2D nanoarray

Researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules. Molecular self-assembly on a metal results in a high-density, 2D, organic quantum-dot array with electric-field-controllable charge state, with the organic molecules used as 'nano-sized building blocks' in fabrication of functional nanomaterials. Achieved densities are an order of magnitude larger than conventional inorganic systems.

Quantum paradox experiment may lead to more accurate clocks and sensors

More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics. A physicist said the international collaboration aimed to test Einstein's twin paradox using quantum particles in a 'superposition' state.

Chains of atoms move at lightning speed inside metals

A phenomenon that has previously been seen when researchers simulate the properties of planet cores at extreme pressures has now also been observed in pure titanium at atmospheric pressure. Chains of atoms dash around at lightning speeds inside the solid material.

Giving ATLAS a boost

The outer realms of the periodic table, where stable, long-lived isotopes give way to radioactive ions, offer nuclear scientists a unique glimpse into the structure of nuclei and a better understanding of how the different elements in our universe came to be as a result of stellar fusion or supernova explosions.

Modeling airborne disease diffusion

With outbreaks of airborne diseases such as measles occurring with growing frequency, modeling how the diffusion process works in dynamic contact networks is an increasingly important research area for epidemiology. A team including Macquarie University researchers Mohammad Shahzamal, Raja Jurdak, and Bernard Mans has developed a computational diffusion model that overcomes previous limitations in capturing an accurate view of the possible spread of infection. The research has been published in Royal Society Open Science.

How to control friction in topological insulators

Topological insulators are innovative materials that conduct electricity on the surface, but act as insulators on the inside. Physicists have begun investigating how they react to friction. Their experiment shows that the heat generated through friction is significantly lower than in conventional materials. This is due to a new quantum mechanism, the researchers report.

The nano-guitar string that plays itself

Scientists have created a nano-electronic circuit which vibrates without any external force. Just as a guitar string vibrates when plucked, the wire -- 100,000 times thinner than a guitar string -- vibrates when forced into motion by an oscillating voltage. The surprise came when they repeated the experiment without the forcing voltage. Under the right conditions, the wire oscillated of its own accord. The nano-guitar string was playing itself.

Scientists reveal mechanism of electron charge exchange in molecules

Through a new scanning transmission electron microscopy method, researchers are able to observe electron distribution between atoms and molecules and uncover clues to the origins of ferroelectricity, the capacity of certain crystals to possess spontaneous electric polarization that can be switched by the application of an electric field. The research also revealed the mechanism of charge transfer between two materials.

Alphabet of 140 puzzle pieces programs origami

How can a single origami crease pattern be folded into two precisely defined target shapes? Researchers at AMOLF and Leiden University have created an "alphabet" of 140 origami "puzzle pieces" that allows them to do just that, as described today in Nature Physics. This discovery could help in the construction of origami robots and toward designing smart programmable materials.

Pages

Subscribe to Mr. Loyacano RSS