A future colorfully lit by mystifying physics of paint-on semiconductors

Some novel materials that sound too good to be true turn out to be true and good. An emergent class of semiconductors, which could affordably light up our future with nuanced colors emanating from lasers, lamps, and even window glass, could be the latest example.

Media Invited to View NASA's Mission to Study Mars Interior

Media are invited to view NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander Friday, April 6, at Vandenberg Air Force Base in California, where it's currently undergoing final tests for its May launch.

A new kind of quantum bits in two dimensions

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope - these are the ingredients to create a novel kind of a so-called 'quantum dot'. These extremely small nanostructures allow delicate control of individual electrons by fine-tuning their energy levels directly. Such devices are key for modern quantum technologies.

A future colorfully lit by mystifying physics of paint-on semiconductors

It defies conventional wisdom about semiconductors. It's baffling that it even works. It eludes physics models that try to explain it. This newly tested class of light-emitting semiconductors is so easy to produce from solution that it could be painted onto surfaces to light up our future in myriad colors shining from affordable lasers, LEDs, and even window glass.

NASA to Discuss Upcoming Launch of Next Planet Hunter

Join NASA at 1 p.m. EDT Wednesday, March 28, as astrophysics experts discuss the upcoming launch of NASA's next planet hunter, the Transiting Exoplanet Survey Satellite (TESS).

Taking MRI technology down to micrometer scales

Millions of magnetic resonance imaging (MRI) scans are performed each year to diagnose health conditions and perform biomedical research. The different tissues in our bodies react to magnetic fields in varied ways, allowing images of our anatomy to be generated. But there are limits to the resolution of these images—generally, doctors can see details of organs as small as a half millimeter in size but not much smaller. Based on what the doctors see, they try to infer what is happening to cells in the tissue.

Chirping is welcome in birds but not in fusion devices

Birds do it and so do doughnut-shaped fusion facilities called 'tokamaks.' But tokamak chirping -- a rapidly changing frequency wave that can be far above what the human ear can detect -- is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth.

Plasmons triggered in nanotube quantum wells

A novel quantum effect observed in a carbon nanotube film could lead to the development of near-infrared lasers and other optoelectronic devices, according to scientists.

Sensing scheme improves accuracy when reading data from spin-based memory storage

A voltage sensing scheme developed by researchers from Singapore could improve the accuracy of reading data from spin-based memory systems with only minimal modifications. The scheme responds dynamically to voltage changes in the system, so that it can better discern whether it is reading a binary on (1) or off (0) state.

Stephen Hawking had pinned his hopes on 'M-theory' to fully explain the universe—here's what it is

Rumour has it that Albert Einstein spent his last few hours on Earth scribbling something on a piece of paper in a last attempt to formulate a theory of everything. Some 60 years later, another legendary figure in theoretical physics, Stephen Hawking, may have passed away with similar thoughts. We know Hawking thought something called "M-theory" is our best bet for a complete theory of the universe. But what is it?


Subscribe to Mr. Loyacano RSS